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In this article, the low-pressure die-cast (LPDC) process parameters of aluminum alloy thin-walled com-
ponent with permanent mold are optimized using a combining artificial neural network and genetic
algorithm (ANN/GA) method. In this method, an ANN model combining learning vector quantization
(LVQ) and back-propagation (BP) algorithm is proposed to map the complex relationship between process
conditions and quality indexes of LPDC. The genetic algorithm is employed to optimize the process
parameters with the fitness function based on the trained ANN model. Then, by applying the optimized
parameters, a thin-walled component with 300 mm in length, 100 mm in width, and 1.5 mm in thickness is
successfully prepared and no obvious defects such as shrinkage, gas porosity, distortion, and crack were
found in the component. The results indicate that the combining ANN/GA method is an effective tool for the
process optimization of LPDC, and they also provide valuable reference on choosing the right process
parameters for LPDC thin-walled aluminum alloy casting.

Keywords artificial neural network, genetic algorithm, LPDC,
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1. Introduction

Owing to the advantages of producing low-porosity and
semi-automatic production, high-quality casting and high
productivity, low-pressure die-cast (LPDC) process is consid-
ered as the dominant preparation process for casting aluminum
alloy. During the last decades, the evolution of the LPDC
process and its development as a major manufacturing tech-
nology has been studied by a number of researchers (Ref 1-3).
With the increasing requirements of light-weight aluminum
alloy castings in the automotive, developing a lighter and
thinner aluminum alloy casting is becoming a common study
subject for researchers of the whole world (Ref 4-6). Unfor-
tunately, it is difficult to design the best appropriate process of
LPDC with permanent mold for a thin-walled casting with the
thickness less than 2 mm because of its poor filling-ability. In
recent years, the numerical simulation technology has been
rapidly developed and applied successfully in many casting
industries to improve the product quality and reduce the
manufacturing cost (Ref 7-9). The analyses and interpretations
of the simulation results, however, are still empirical, and the
substantial computation time cannot also meet the requirement

of online control. Advanced methods are highly demanded to
model and optimize the LPDC process with the purpose of
manufacturing high-quality casting.

ANN and GA are two of the most promising natural
computation techniques. In recent years, ANN has become a
very powerful and practical method to model very complex
non-linear systems (Ref 10-12). And some novel evolutionary
neural networks proposed in the literature have greatly
improved the flexibility of the network (Ref 13, 14). For
example, Pettersson et al. (Ref 14) employed a corrected
Akaike�s criteria to construct the network model with the best
compromise between the goodness of fit and the number of
parameters. The optimized model can effectively avoid over-
fitting and under-fitting of data during the training of the
network. GA can be found in various research fields for
parameter optimization (Ref 9, 15, 16). And in recent times,
GA has also been successfully used to solve numerous
problems in the materials areas, such as materials design, alloy
design, polymer processing, continuous casting, metal rolling,
metal cutting, welding, production at industrial scale, and so on
(Ref 17-20). Therefore, ANN and GA are both considered to be
appropriate in the process optimization of LPDC, and the
researchers began to use these two techniques in process
optimization of die-casting process and injection molding
recently (Ref 21, 22). During these applications of soft
computing, back-propagation (BP) ANN is often applied to
map the relationship between process conditions and quality
indexes. However, the poor filling-ability of thin-walled casting
in LPDC process makes the optimization of process parameters
more complex. And BP ANN alone is insufficient to yield any
reasonable results for this process.

For this reason, an ANN model combining learning vector
quantization (LVQ) and back-propagation (BP) algorithm is
proposed in this article to model the process. And the
orthogonal array design and numerical simulation is applied
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to obtain the training samples instead of carrying out a real
experiment for the sake of cost saving. A GA is implemented to
optimize the process afterward. Finally, by applying the
optimized technology parameters, a sound casting with
300 mm in length, 100 mm in width, and 1.5 mm in thickness
is successfully prepared and the casting quality is improved
obviously.

2. Process Parameters Optimization of LPDC
Using the Combining ANN/GA Method

In this article, an L-shape thin-walled casting with 300 mm
in length, 100 mm in width, and 1.5 mm in thickness was
studied, shown in Fig. 1. A356 (Al-7Sil-0.4Mg) was selected
as the materials of casting. The sketch map of the model section
is shown in Fig. 2. It can be seen that the cooling channels and
gating system located in bottom of the die. And considering the
poor filling-ability of thin-walled casting and entrap gas during
casting filling die cavity, some essential vents are designed at
the interface of top die and bottom die. The combining ANN/
GA method was used to optimize the process parameters of
LPDC for the thin-walled casting. The procedure of combining
ANN/GA optimization is shown in Fig. 3. It involves selection
of LPDC process parameters and quality indexes, preparation
of train/test samples, creating of predictive ANN models, and
optimization of process parameters via a genetic algorithm. The
detail of each part of this procedure will be given in the
following sections.

2.1 Selection of LPDC Process Parameters and Quality
Indexes

Many process parameters may affect the casting quality in
LPDC, such as exerting pressure velocity, holding pressure,
pressure holding time, melt temperature, mold temperature, etc.
(Ref 3, 23). It is well known that the most significant
parameters are melt temperature, mold temperature, and
exerting pressure velocity in thin-walled part casting. Because
of poor filling-ability of the thin-walled part, improper selection
of any of these parameters may cause defects (such as cold
shuts, distortions and cracks) in the casting and longer process
cycle time. For instance, too lower melt and mold temperature
may cause cold shut or short fill because of the decrease of
casting filling-ability. Too high temperature would shorten the
mold life and increase cooling time consequently the produc-
tion time. In addition, exerting pressure velocity is having its
own significance as too high filling velocity may lead to
incomplete filling of the casting cavity, however, too low
exerting pressure velocity results in longer process cycle time
and the higher temperature difference in the cavity. The
difference of temperature gradient in the part may cause
residual stresses at the end mold filling stage. Therefore, in this
study inlet melt temperature, initial mold temperature, and
exerting pressure velocity were considered as ANN inputs and
defect prediction, filling time, and maximum temperature
difference in the casting as ANN outputs.

2.2 Train/Test Samples

The training samples for the initial training of the ANN
model consist of a number of sets of inputs and outputs.
In order to identify the relation between the given input-output
parameters, these training samples should be carefully selected
and cover the wide variety of possible ranges. Therefore,
orthogonal array was introduced in the training samples design
in this study. The orthogonal array is a procedure to system-
atically organize experiment runs to improve processes in the
most effective way, which results in conducting a minimum

Fig. 1 3-D appearance of casting

Fig. 2 The model section sketch map Fig. 3 Flow chart of combining ANN/GA optimization
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number of experiments without losing significant information.
The parameters and their chosen levels are shown in Table 1.
Table 2 depicts the combinations of parameter levels for each
experiment. Based on orthogonal array design of three
parameters with five levels, total 25 set of experimental
samples were generated. A commercial finite-element package,
ProCAST was used to calculate and obtain the training samples
instead of carrying out a real experiment for the sake of cost
saving. The other advantage of finite-element method is that the
time required to train a network is much less than that with real
experiments because there is no noise existing in the compu-
tation data compared to the experimental data (Ref 21, 22). The
main objectives of the simulation experiments are to determine
whether or not there is a defect either on the surface or inside
the casting and what filling time and the maximum temperature
difference in the casting are. The numerical simulation results
are presented in Table 2.

2.3 Predictive ANN Models

An ANN model is referred to as a type of computational
models that consists of hidden-layer neurons connected
between the input and the output neurons. The connections
between the neurons are described by weights which are to be
determined through training. The nonlinear hyperbolic func-
tions are usually used as the activation functions to increase the
modeling flexibility. In this study, a learning vector quantiza-
tion (LVQ) ANN model was applied to predict defect existence
in the casting. Defect existence in LPDC products constitutes
an importance criterion in characterizing the manufacturing
process as successful or not. The ANN models with back-
propagation (BP) algorithm were used to map the relationship
between filling time, maximum temperature difference, and
process parameters. BP network is a typical ANN that has been
widely used in many research fields (Ref 10-12). The data sets
in Table 2 were used to train and test the ANN model. This data
set of 25 data series was divided into two representative subsets
of 20 and 5 data series, respectively (see Table 2). The first
subset was used for ANN training and the second for checking
the trained ANN�s prediction accuracy using unknown inputs.
Implementation was carried out in the application toolbox of
Matlab.

2.3.1 Defect Prediction Through LVQ ANN Implemen-
tation. The LVQ ANN model was used to predict defect
existence in the casting, owing to its predominance in
classifying problems (Ref 22). This is a two-class problem,
where the first, denoted with ‘‘1’’ in Table 2, implies perfect
filling and the second, denoted with ‘‘2’’, implies a defect in the
casting.

Table 1 The process parameters and their levels

Melt
temperature, �C

Mold
temperature, �C

Exerting pressure
velocity, MPa/s

670 350 0.05
685 400 0.04
700 450 0.03
715 500 0.02
730 550 0.01

Table 2 25 set of training samples and corresponding numerical simulation results (perfect filling is denoted by 1
and defect existence by 2)

Trail
number

Melt
temperature, �C

Mold
temperature, �C

Exerting pressure
velocity, MPa/s

Perfect
filling

Filling
time, s

Temperature
difference, �C

Training subset
1 670 350 0.05 1 3.643 22.6
2 685 350 0.04 2 5.503 7.8
4 715 350 0.02 2 7.26 13.5
5 730 350 0.01 2 2.089 2.3
6 670 400 0.04 2 7.12 8.1
7 685 400 0.03 2 7.07 6
8 700 400 0.02 1 7.09 26.8
10 730 400 0.05 1 3.265 12.7
11 670 450 0.03 2 2.706 4.8
12 685 450 0.02 2 9.11 7.5
14 715 450 0.05 1 2.566 6.9
15 730 450 0.04 1 3.727 11.5
17 685 500 0.01 2 12.88 1.6
18 700 500 0.05 1 2.996 9.9
19 715 500 0.04 1 4.508 9.6
20 730 500 0.03 1 3.265 5.6
21 670 550 0.01 2 10.5 38.4
22 685 550 0.05 2 11.21 25.5
23 700 550 0.04 2 4.016 22.1
24 715 550 0.03 1 7.075 29
Testing subset
3 700 350 0.03 1 4.89 24.3
9 715 400 0.01 2 7.9 13.7
13 700 450 0.01 2 9.36 3
16 670 500 0.02 2 2.59 12.8
25 730 550 0.02 1 7.248 29.8
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Using a LVQ ANN, modeling needs to determine:

• the minimum and maximum input values
• the number of neurons in the competitive layer
• the percentage of class participation in the training subset
• the training rate.

Minimum and maximum input values and percentage of class
participation in the training subset can be calculated from the
data of Table 2. The results are shown in Table 3 and 4.
Neurons in the competitive layer and training rate practically
represent the ANN architecture and training algorithm, respec-
tively. Four competitive layer neurons and a training rate of
0.001 are used in the LVQ ANN model, where they are
determined by train trails. In addition, in order to speed up the
training phase and enhance training algorithm behavior, the
values of exerting pressure velocity in Table 3 are multiplied by
10000. Table 5 depicts the comparison of simulation results to
the ANN prediction. Figure 4 shows the training error versus
epochs. Given the sizes of training and testing subsets,
performance achieved is considered to be adequate.

2.3.2 Prediction of Filling Time and Maximum Temper-
ature Difference Through BP ANN Implementation. The
ANN model was trained using the BP algorithm to map the
relationship between filling time, maximum temperature dif-
ference, and process parameters. The ANN architecture adopted
in the model is shown in Fig. 5. It consists of three layers: an
input layer, a hidden layer, and an output layer. Hidden layer
has seven neurons, whereas input and output layers have three
and two neurons, respectively. Neurons in input layer corre-
spond to melt temperature, mold temperature, and exerting
pressure velocity. Output layer corresponds to filling time and
maximum temperature difference.

In the network, the inputs are operated and transformed into
the output by the state transition rule

vj ¼
X

wijyi ðEq 1Þ

yj ¼ f vj
� �

ðEq 2Þ

where yi in Eq 1 and yj in Eq 2 is the output from a neuron i
acting as an input of neuron j and the output of neuron j,
respectively. wk

ij is the connection weight. vj is the state vari-
able of the weights, which imply the connection strength be-
tween the neurons. The weighted signals are summed up in vj

Table 3 Minimum and maximum input values

Tinlet, �C Tmold, �C Vexerting, MPa/s

Min 350 670 0.01
Max 550 730 0.05

Table 4 Percentage of class participation in the training
subset

Class Class 1 (perfect filling) Class 2 (incomplete filling)

Percentage (9/20)9 100 = 45% (11/20)9 100 = 55%

Table 5 Comparison of simulation results to the LVQ
ANN defect-existence prediction model

Trail number Simulation results LVQ ANN prediction

Training subset (90% predictive precision)
1 1 1
2 2 2
4 2 2
5 2 2
6 2 2
7 2 2
8 1 2
10 1 1
11 2 2
12 2 2
14 1 1
15 1 1
17 2 2
18 1 1
19 1 1
20 1 1
21 2 2
22 2 2
23 2 2
24 1 2
Testing subset (80% predictive precision)
3 1 1
9 2 2
13 2 2
16 2 2
25 1 2

Fig. 4 Training error versus epochs for the LVQ ANN

Fig. 5 Neural network architecture used in this study
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and transformed into the output signal through an activation
function. In this study, the activation function is given by the
smooth sigmoid function

f ðvjÞ ¼
1

1þ e�vj
ðEq 3Þ

The goal of the ANN training process is to modify the
weights which characterize the BP neural network such that the
actual output vector Yp approximates the target output vector Y t

as closely as possible. The error norm E between the determined
output Yp vector and the targeted output vector Y t is defined as

E ¼ Yp � Y tk k2 ðEq 4Þ

As the sigmoid transfer function is used in the BP algorithm,
the system cannot actually reach its extreme values of 0 and 1
without infinitely large weights. Therefore, the ANN model
requires the normalization of the input and the output data.
However, it is found better, in practice, to normalize the input
patterns as well as output patterns to between 0.1 and 0.9 (Ref
24, 25). The inputs of the training samples are normalized
linearly based on the following formulas.

�vi ¼
vi � vimin þ e1

vimax � vimin þ e2
ðEq 5Þ

where ximin and ximax are the minimal and maximal values of
the ith input value xi, respectively, in the sample data set; �xi
is the normalized value of parameter x ranging between 0.1
and 0.9. The e1, e2 0 � e1 < e2 � 1ð Þ are the scaling factors
for ensuring that the normalized values would not be close to
0 or 1. The outputs can be normalized in the exactly same
way.

Figure 6 shows the training error during training. The mean
square error of all 20 training samples is 0.00099426. The
remaining five samples are then used to test the performance of
the ANN. As shown in Table 6, the results predicted from the
ANN model are compared with those obtained by numerical
simulation. It is seen from Table 6 that ANN prediction is in
good agreement with the simulation results. This indicates that
the ANN has a good performance, and it can accurately map the
relationship between process conditions and quality indexes of
the casting.

2.4 Optimization of Process Parameters Via a Genetic
Algorithm

A genetic algorithm is a stochastic optimization procedure,
which can solve complex problems by imitation Darwin�s
theory of evolution on a computer (Ref 21, 22, 25). The
concept behind the creation of genetic algorithms is the global
optimization of an objective function in a complex multi-modal
search space. Solution of the optimization problem with genetic
algorithm begins with a set of chromosomes that are randomly
selected. The entire set of these chromosomes constitutes a
population. The chromosomes evolve during several iterations
or generations. New generations (offspring) are generated using
the crossover and mutation technique. Crossover involves
splitting two chromosomes and then combining one-half of
each chromosome with the other pair. Mutation involves
flipping a single bit of a chromosome. The chromosomes are
then evaluated using a certain fitness criteria and the best ones
are kept while the others are discarded. This process is repeated
until one chromosome has the best fitness. That chromosome is
taken as the best solution of the problem.

The optimized objective function based on the genetic
algorithm is formulated according to the simulation function
obtained by ANN in the previous section

f ðX Þ ¼ 10000� ðnetlvqðX Þ � 1Þ þ netbpðX Þ ðEq 6Þ

where X is the process parameter values, netlvqðX Þ is the
output value of the LVQ ANN model for defect existence,
netbpðX Þ is the output value of the BP ANN model for filling
time and maximum temperature difference. The various calcu-
lation parameters for GA are shown in Table 7.Fig. 6 Training error versus epochs for the BP network

Table 6 Comparison of ANN predictions with simulation results for the test samples

Trail
number

Process parameters Simulation results ANN predictions

Melt
temperature, �C

Mold
temperature, �C

Exerting pressure
velocity, MPa/s

Filling
time, s

Temperature
difference, �C

Filling
time, s

Temperature
difference, �C

3 700 350 0.03 4.89 24.3 6.97 20.63
9 715 400 0.01 7.9 13.7 9.14 16.47
13 700 450 0.01 9.36 3 7.52 5.39
16 670 500 0.02 2.59 12.8 1.51 10.14
25 730 550 0.02 7.248 29.8 7.41 27.27
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3. LPDC Experiment

The experimental materials, A356 alloy, are melted in an
electrically heated furnace using a graphite crucible. Its
chemical composition is shown in Table 8. For experimental
need, a small type of LPDC machine is selected as the
experimental equipment. The sketch map is shown in Fig. 7.
The LPDC process parameters are obtained by the combining
ANN/GA method as mentioned above.

4. Results and Discussion

4.1 Optimized Process Parameters of LPDC

The common LPDC process parameters include pouring
temperature, die temperature, filling pressure, etc. In this study,
by applying the combining ANN/GA method based on
ProCAST, the optimized parameters are obtained through
analyzing the filling state of casting and the major influence
factors of the casting quality. Figure 8 shows the evolution of
the generations based on a genetic algorithm. It is obvious that
convergence is achieved approximately in the 30th generation.
The optimized process conditions are as the following: the melt
temperature is 726 �C, the mold temperature is 493 �C, and
exerting pressure velocity is 0.04 MPa/s; accordingly as ANN
outputs, the filling is perfect, and the filling time and maximum
temperature difference in the casting is 2.987 s and 3.5 �C,
respectively.

4.2 Simulation Results

Figure 9 presents the evolution of filling state at different
filling times during LPDC processing simulation using the
above process parameters. The whole filling time is about 3.39 s
and the filling is perfect without cold shut and short fill at the end
of filling, which is in agreement with the results of ANN. In
Fig. 9, it can also be clearly seen that the molten metal flows
steadily in the die cavity. No obvious turbulence or entrapment
of gas is observed when the molten metal fills the cavity. This is
very advantageous for the preparation of casting with better
mechanical properties. If the filling is not appropriate, the
casting would suffer from filling-related defects such as gas
porosity (Ref 26). In addition, through the observation of
temperature distribution during casting filling from Fig. 9(c) to
(e), it can be obviously found that the maximum temperature
difference in the casting is very small with less than 5 �C. The
value is also in agreement with the ANN predictions. According

to Ref 27, 28, the grain size, distribution of intermetallic phases,
and residual stresses in the casting are strongly influenced by
temperature distribution in the process of casting solidification,
and ultimately affect the casting quality. Therefore, the simu-
lation results indicate that a desired casting could be obtained by
the optimized process parameters.

Figure 10 shows the evolution of filling state at different
filling times during LPDC processing before the process
parameters optimization. The real process parameters are as
follows: pouring temperature 760 �C, die temperature 530 �C,
and exerting pressure velocity 0.03 MPa/s. Compared with the
optimized process parameters, the pouring and die temperature
are much higher. The whole filling time is about 4 s. It is longer
than the one obtained with the optimized process parameters.
This means higher productivity efficiency can be obtained by
applying the optimized process parameters. Moreover, in
Fig. 10, it can be clearly seen that the maximum temperature
difference in the casting is very big with over 25 �C when the
casting filling ends. The too big maximum temperature
difference in the casting may cause residual stresses at the
end mold filling stage.

4.3 LPDC Experiment Result

Figure 11 shows the result of LPDC experiment. Fig. 11(a)
shows the casting prepared before the process parameters
optimization. The surface of casting is rough. The rough

Table 7 The calculation parameters for GA

Parameters Population size Maximum number of generations Decoding Selection Crossover Mutation

Values/method 30 80 Floating-point Rank-based model One-point crossover Simple mutation

Table 8 Chemical compositions of A356 alloy used
in present study

Element Si Mg Cu Mn Sr Ti Others Al

Content (%) 7 0.4 0.2 0.1 0.03 <0.1 <0.15 Bal.

Fig. 7 Schematic diagram of LPDC machine

Fig. 8 Objective function values for the best chromosome in each
generation
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surface is due to the excessively high pouring and mold
temperature mentioned above in the simulation results. In
Fig. 11(b), the casting is prepared using the optimized process
parameters. Figure 11(b) illustrates that a sound casting with
300 mm in length, 100 mm in width, and 1.5 mm in thickness
can be successfully prepared using the optimized LPDC
process parameters. It can be clearly seen that the surface of
the casting is smooth, and no obvious defects such as
shrinkage, gas porosity, distortion, and crack are found, which
is in well agreement with simulation result in Fig. 9. In
addition, compared with the casting in Fig. 11(a), the quality of
casting surface is obviously improved, which verifies the
feasibility of using the ANN modeling and GA searching
techniques to model and optimize LPDC process.

5. Conclusions

1. The proposed ANN model combining learning vector
quantization (LVQ) and back-propagation (BP) algorithm
has been shown as an effective method to map the com-
plex relationship between process conditions and quality
indexes of LPDC parts.

2. The LPDC process parameters of A356 aluminum alloy
thin-walled component with permanent mold have been
optimized using the combining ANN/GA method. The

orthogonal array and finite-element method are success-
fully applied to obtain the training samples for the sake
of experimental accuracy and cost saving. The optimized

Fig. 9 The filling state at different times of LPDC simulation with optimized process parameters. (a) 0.85, (b) 1.04, (c) 1.58, (d) 2.54, and
(e) 3.39

Fig. 10 The filling state at different times of LPDC simulation without optimized process parameters. (a) 0.95 s, (b) 1.64 s, (c) 2.34 s,
(d) 3.68 s, and (e) 4.38 s

Fig. 11 Cast A356 alloy parts: (a) before the process parameters
optimized and (b) after the process parameters optimized
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process parameters are as follows: melt temperature
726 �C, die temperature 493 �C, and exerting pressure
velocity 0.04 MPa/s.

3. By applying the optimized parameters, a thin-walled
component with 300 mm in length, 100 mm in width,
and 1.5 mm in thickness has been successfully prepared
and no obvious casting defects such as shrinkage, gas
porosity, distortion, and crack can be found in the com-
ponent. In addition, compared with the casting prepared
before process parameters optimized, the quality of cast-
ing surface is obviously improved. The results demon-
strate adequately that the combining ANN/GA method
proposed in this article is a feasible and an effective tool
for mapping the complex relationship between process
parameters and part quality indexes and optimizing the
LPDC process parameters.

4. The modeling and optimization methods proposed in this
article show the great potential in complicated industrial
applications.
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